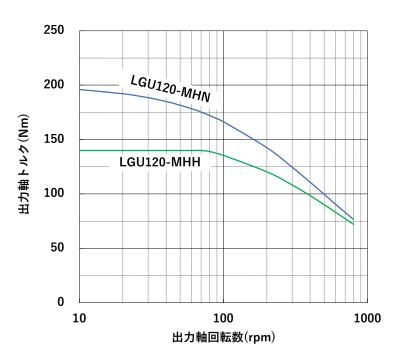

■ 出力トルク曲線

■ 接続例



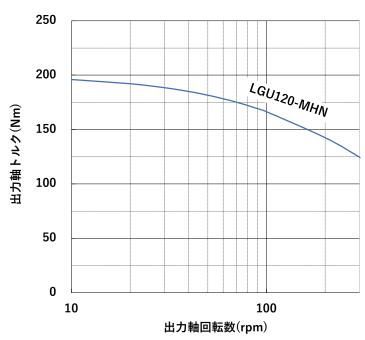
- ▶ 多段組合せのページをご覧ください。
- ▶ オプション部品のページをご覧ください。

■ 寸法図

LGU120-MHH, MHN

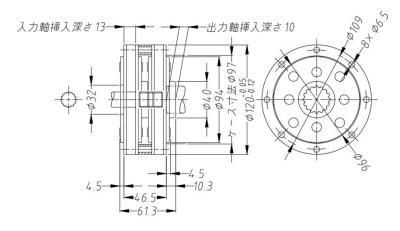
入力軸挿入深さ13─ ▼ ▼ ▼ ▼ ─出力軸挿入深さ10
大万 <u><u></u> 一 </u>
\$\int_{\inttileftintetalleftinteta\int_{\int_{\inttileftinteta\int_{\inttileftinteta\int_{\inttileftinteta\int_{\inttileftinteta\int_{\inttileftinteta\int_{\inttileftinteta\int_{\inttileftinteta\int_{\inttileftinteta\int_{\inttileftinteta\int_{\inttileftinteta\int_{\inttileftinteta\int_{\inttileftileftileftileftileftileftileftile
75 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
4.5
16±0.2
30.0

型式	品番	実減速比	最大出力 トルク(Nm)	入力形状	出力形状	重量 (kg)
LGU120-M	LGU120-3MHH	3	137	スプライン穴 17×15×1	スプライン穴 17×15×1	1.3
	LGU120-4MHH	4				1.3
	LGU120-5MHH	5				1.4
	LGU120-3MHN	3	196		スプライン穴 30×16×1.667	1.2
	LGU120-4MHN	4				1.3
	LGU120-5MHN	5				1.4



196 Nm

※出荷状態ではユニットは接続されておりません。


■ 出力トルク曲線

※最終段(出力側)のユニットのトルク曲線を記載

■ 寸法図(接続時)

2段仕様

実減速比	1段目品番	2段目品番	スペーサー	継ぎ軸	最大出力 トルク(Nm)	入力形状	出力形状
9	LGU120-3MHH	LGU120-3MHN		U120-906×1	196	スプライン穴 17×15×1	スプライン穴 30×16×1.667
12	LGU120-4MHH	LGU120-3MHN					
16	LGU120-4MHH	LGU120-4MHN	U120-903×1				
20	LGU120-5MHH	LGU120-4MHN					
25	LGU120-5MHH	LGU120-5MHN					

[※] 継ぎ軸を軸方向に固定するには、軸用C型止め輪(JIS B 2804)STW-16が 2個必要です。オプションには同梱しておりませんのでご注意ください。