UNIT TYPE NAMING RULE · GENERAL SPECIFICATIONS #### MODEL NAMING RULE #### GENERAL SPECIFICATIONS | REDUCER TYPE | Planetary Gear | | | |------------------|--|--|--| | STRUCTURE | Open type (not sealed by case) | | | | OUTPUT DIRECTION | Same Direction of Input Rotation (Sun Gear Input & Carrier Output) | | | | EFFICIENCY | 90 % or more (One stage reducer, Continuous Drive) | | | | NOISE LEVEL | Less than 70dB (A Range) 1.0m | | | | LUBRICATION | Grease or Oil lubrication | | | | TEMPERATURE | 0~40°C ※Please consult us if ambient temperature is out of the range. | | | | SETTING ANGLE | Horizontal setting of input & output shaft is recommended. | | | # **GEAR SELECTION PROCEDURE for UNIT TYPE** ### ■ GEAR SELECTION PROCEDURE | Procedure | Notes · Calculation | Example | | | |--|--|--|--|--| | Step1
Usage Conditions | Application Type of drive unit and Acceleration/Deceleration Load Torque T Output Revolution n _o Input Revolution n _i Drive Pattern Driving hours/day, Stop and Go | Application: Conveyor(Unstable Load) 3Phase Induction Motor(300W · 4P) Load Torque T: 4.5Nm Output Revolution n_o: 350rpm Input Revolution n_i: 1750rpm Drive Pattern: 9hours/day, Continuous | | | | Step2 Calculation of Fundamental Parameters and Service Factor | Calculation of Speed Ratio R R=n _i ÷n _o Choice of Service Factor(SF) Choose appropriate Service Factor(SF) to your application from the table of SF. Calculation of Output Torque T _o | Calculation of Speed Ratio R R = n_i ÷ n_o = 1750 ÷ 350 = 5 Choice of Service Factor(SF) Drive Characteristic: Moderate Shock Load (M) From the table, SF = 1.25 Calculation of Output Torque T_o T_o=T × SF = 4.5 × 1.25 ≒ 5.63Nm | | | | Step3
Selection of Series | T _o =T×SF • Selection of Series Choose the appropriate series with a torque curve of P.6 which has a torque more than the above calculated output Torque T _o , and Revolution n _o . Series A would be chosen under the below case. (E) Output Revolution(rpm) | Selection of Series From the above calculations, the given important parameters are Output Torque T _o : 5.63Nm Output Revolution n _o : 350rpm The series which has a torque curve more than the above calculated output Torque T _o and Revolution n _o is Selected Series: LGU75-S Series | | | | Step4
Selection of Model | Selection of Model Using Torque Curve graph, choose the appropriate model with which the above calculated values are within the tolerable output torque range. Torque Curve Tolerable Output Torque Range | Selection of Model The model which has a torque curve which satisfies the above parameters is, Selected Model: LGU75-5SAD 10 LGU75-SLD LGU75-SAD Output Revolution(rpm) | | | | Step5
Actual Speed Ratio | • Confirm the Actual Speed Ratio R _A • Re-Calculation of Input/Output Torque and Revolution Using the actual speed ratio R _A , Please re-confirm the actual input/output torque and revolution. **Re-confirm that the actual input/output torque and revolution are within the tolerable output torque range. | Confirm the Actual Speed Ratio R _A The actual speed ratio of the LGU75-5SAD is R _A =4.8 Re-Calculation of Input/Output Torque and Revolution In this example, it is assumed that the output torque and the input are fixed. Input Torque = 5.63 ÷ 4.8 ≒ 1.17Nm Output Revolution = 1750 ÷ 4.8 ≒ 364.6rpm The output torque 5.63Nm at the actual output revolution is within the tolerable output torque range. | | | | | | | | | # **GEAR SELECTION PROCEDURE for UNIT TYPE** ### ■ TORQUE CURVEs of REPRESENTATIVE MODELs of EACH SERIES #### ■ SERVICE FACTOR (SF) | Duine Condition | Characteristic of Load Pattern | | | | | |--------------------|--------------------------------|---------------------------|----------------------------------|------------------------|--| | Drive Condition | Uniform Load(U) | Moderate Shock
Load(M) | Moderate Heavy
Shock Load(MH) | Heavy Shock
Load(H) | | | 3Hours or less/Day | 1.0 | 1.0 | 1.25 | 1.5 | | | 3∼10Hours/Day | 1.0 | 1.25 | 1.50 | 1.75 | | | 10~24Hours/Day | 1.25 | 1.50 | 1.75 | 2.00 | |